Transporte y logística | Mantenimiento

Mantenimiento 4.0 en trenes de Alta velocidad

1584
0
0
0
7 min. de lectura
Imagen del artículo Mantenimiento 4.0 en trenes de Alta velocidad

Jose antonio Marcos Alberca Carriazo
Head Manager of Smart Maintenance Engineering and new projects

1. INTRODUCCIÓN

Talgo en sus 75 años de historia, siempre ha estado a la vanguardia tecnológica incorporando nuevos avances para la mejora de fiabilidad y mantenibilidad de los sus trenes en comparación con las políticas de mantenimiento estándar que se realiza en trenes de tipo convencional.

Entre estas nuevas tecnologías para la optimización de los costes de mantenimiento y mejora de la seguridad y fiabilidad de los trenes, se encuentran la aplicación de diferentes procesos y metodologías modernas de Ingeniería de mantenimiento, así como el uso de las tecnologías de información, para tele mantenimiento, equipamiento sofisticado equipamiento de mantenimiento predictivo y máquinas auxiliares para la mejora de la mantenibilidad de material rodante.

Todas estas tecnologías se han visto dinamizadas por la llegada del Internet of things, y la industria 4.0 que ha hecho mucho mas asequible y alcanzable tecnología punta a nivel industrial.

2. TECNOLOGÍA DE INGENIERÍA DE MANTENIMIENTO DE TRENES TALGO

Actualmente, el mantenimiento de trenes de alta velocidad, requiere de una alta tecnificación tanto en los procesos de mantenimiento como en las técnicas de Ingeniería de mantenimiento, para lograr los estándares de seguridad, calidad y fiabilidad que se le exigen, bajo unos indicadores de mantenibilidad óptimos que puedan hacer posible dichas operaciones.

Mantenimiento basado en RCM y CBM

El proceso de optimización de la basa en 2 pilares fundamentales, gestión de los activos de mantenimiento se RCM y CBM. El objetivo fundamental desde Mantenimiento en el diseño de un tren para los requerimientos tan exigentes de explotación a los que va a estar sometido durante su vida útil, es la optimización de sus costes de mantenimiento. Para ello se dotará al tren desde su diseño conceptual de la máxima sonorización posible, necesario para poder crear los indicadores de salud de los sistemas críticos y poder realizar mantenimiento basado en la condición y estado de salud de dichos activos. Actualmente, cada tren lleva mas de 2000 sensores, los cuales pueden llegar a transmitir información en tiempo real, a través del sistema de comunicación embarcado.

Esta información se envía el análisis de la diagnosis de los diferentes sistemas electrónicos embarcados en el tren, los cuales muestran los estados y averías más significativas, de forma que analizando la evolución de estos estados se pueden determinar los sistemas y equipos que en un futuro próximo deberán de ser reparados o reemplazados para no que se produzca el fallo de los mismos.

Para los sistemas y equipos en los cuales no se pueda realizar CBM, se realizara un análisis RCM para obtener los modos de fallo funcionales y suscorrespondientes causas raíces, para definir las políticas de mantenimiento correspondientes para poder mitigar los posibles modos de fallo funcionales.

3. INTERNET OF TRAINS

El estado de desarrollo de las nuevas tecnologías de IoT han posibilitado una gran expansión y tecnificación de los procesos industriales, dando como resultado una tecnología punta y asequible para ser utilizada.

En esta línea, Talgo ha apostado por la industria 4.0 trabajando conjuntamente en nuevos desarrollos basados en la plataforma Google Cloud, de forma que se puedan utilizar toda esta tecnología para el desarrollo de la plataforma IoT Talgo.

El reto que supone la explotación de trenes de alta velocidad con velocidades superiores a los 300 km/h y con una exigencia cada vez mas elevada en lo que se refiere a los estándares de confort, fiabilidad y seguridad, ha supuesto que las políticas de mantenimiento sean cada vez mucho mas exigentes. El mantenimiento basado en RCM, y basado en la condición requiere de un desarrollo tecnológico que posibilite obtener información continua, fiable y detallada de los distintos sistemas que integran el tren, de forma que cada vez mas sistemas y equipos están interconectados a través de equipos electrónicos que reciben las señales y datos de los miles de sensores que componen un tren, de forma que esta información está disponible para su envío y posterior análisis y tratamiento.

El envío de eventos, variables de entorno y alarmas del tren, se realiza en streaming , tiempo real, y de forma segura y encriptada, de forma que una vez que se suben a la nube, allí son tratados y filtrados por los motores que la plataforma cloud permite.

Una vez los datos son procesado en Cloud, los datos pueden ser consultados, analizados y enviados a través de las distintas App que se conectan a la plataforma Cloud.

Dentro de las aplicaciones mas relevantes que Talgo a desarrollado para el análisis y tratamiento de datos y que sirven como base para la mejora continua y toma de decisiones de cara a un mantenimiento predictivo y/o basado en la condición , son las siguientes:

3.1 Sistemas de monitorización en tiempo real-Tesla

Con esta herramienta de telediagnosis nos permite conocer en tiempo real la localización y el estado de las principales variables de los equipos, de forma que ante cualquier fallo el sistema envía la información a través de cloud, y operador de telefonía, a los teléfonos o direcciones de correo electrónico establecidas previamente, con toda la información necesaria para efectuar las acciones oportunas.

Además, el sistema indica la posición exacta del tren en cada momento para poder obtener una mejor información acerca del estado en el que se encuentra en el momento de la avería.

A través del envío de datos en streaming desde el tren se pueden llegar a enviar mas de 3000 variables/seg. Requiriendo para ello un sistema robusto y eficiente ETL, para la ingesta, almacenamiento y procesamiento de los datos, utilizando Google Cloud Platform.

Con la monitorización en tiempo real es posible visualizar online el estado de los principales equipos e instalaciones del tren a través de diversas pantallas a tal fin desarrolladas en la aplicación TESLA.

3.2 Prognosis y Machine learning

En el mantenimiento actual de trenes de alta velocidad, se hace necesario contar con herramientas de diagnosis que nos puedan indicar el avance y evolución de determinados indicadores de estado de salud de los principales equipos críticos para la mantenibilidad y fiabilidad del tren.

Talgo está apostando por este tipo de tecnología que permite mediante una monitorización correcta y el análisis de los datos enviados por el tren, poder tratar los datos de forma que se puedan determinar con un grado de certidumbre adecuado el tiempo hasta el fallo de distintos equipos o sistemas, siendo determinante para la realización de un mantenimiento predictivo basado en la condición adecuado.

Un ejemplo con caso de éxito corresponde a la predicción del fallo de rodamientos en base a la monitorización continua de la temperatura de los mismos.

En este caso se ha obtenido una red neuronal que en base da la monitorización de las temperaturas de los restantes rodamientos del mismo eje, junto con la temperatura exterior y la velocidad del tren, es capaz de predecir la temperatura de cualquiera de los rodamientos, de forma que si esta temperatura (calculada) difiere un determinado valor de la temperatura (medida), se lanzaría una alarma de discrepancia de temperatura, de forma que se puede determinar con tiempo suficiente la evolución al fallo del rodamiento evitando la rotura del mismo antes de que este se produzca. El tiempo objetivo para ello es el suficiente para poder programar las tareas de mantenimiento para su sustitución dentro de los pasos programados por taller, estando dentro aún del RUL “remaining usefull life”

4. SISTEMAS AUTOMÁTICOS DE INSPECCIÓN DE TRENES - TALVI

El actual mantenimiento de trenes de alta velocidad, requiere de elevados estándares de fiabilidad, disponibilidad y mantenibilidad. Para ello Talgo en aras de una continua mejora continua y vanguardia tecnológica está desarrollando e integrando una nueva tecnología orientada a la inspección automática de trenes basado en visión artificial y escáner 3D.

Estos equipos son capaces de realizar una inspección del tren a velocidad deservicio comercial de hasta 300 km/h, con una precisión y rapidez de análisis mediante machine learning que los hace altamente fiables, seguros y altamente rentables en su utilización.

Esta plataforma llamada TALVI, integra diferentes equipos para realizar inspecciones automáticas de distintas partes del tren.

Las ventajas que ofrecen los equipos TALVI de inspección en vía general:

1 Mejora de la seguridad en la Operación
2. Aumento de la disponibilidad de la flota
3. Aumento de la fiabilidad de la flota
4. Ahorro de costes en programación de tareas y repuestos
5. Realización de las inspecciones en las condiciones reales de explotación.
6. Repetitividad y seguimiento preciso en la medida

Deja tu comentario

Consulta nuestra para evitar que se elimine

Principios y normas de participación en AEM Daily News

En AEM queremos fomentar la participación de los lectores a través de los comentarios en los artículos que publicamos en nuestra web y aplicación móvil. Así mismo, queremos promover una conversación de calidad con los usuarios, que enriquezca el debate y el pluralismo en temas de interés del sector del mantenimiento, en la que quedan excluidos los insultos, las descalificaciones y opiniones no relacionadas con el tema. El objetivo es ofrecer a los usuarios la revista un debate y discusión en la que se respeten los siguientes principios:

Son bienvenidos todos los comentarios de todos los usuarios que contribuyan a enriquecer el contenido y la calidad de la página web y app de AEM Daily News.

La discrepancia y el contraste de opiniones son elementos básicos del debate. Los insultos, ataques personales, descalificaciones o cualquier expresión o contenido que se aleje de los cauces correctos de discusión no tienen cabida en AEM Daily News.

La política de moderación garantiza la calidad del debate, acorde con los principios de pluralidad y respeto recogidos en el aviso legal de esta web y app. En AEM Daily News seremos muy estrictos a la hora de rechazar opiniones insultantes, xenófobas, racistas, homófobas, difamatorias o de cualquier otra índole que consideremos inaceptables.

El usuario publicará sus comentarios con su nombre y apellidos, y se compromete a no enviar mensajes que difamen, insulten, contengan información falsa, inapropiada, abusiva, pornográfica, amenazadora, que dañe la imagen de terceras personas o que por alguna causa infrinjan alguna ley.

La dirección editorial de AEM Daily News decidirá a diario qué contenidos se abren a comentarios. Esta selección se hará con criterios de valor informativo y siempre que resulte posible gestionar una moderación de calidad. La lista de contenidos abierta a comentarios aspira a ser lo más amplia posible y a estar en permanente actualización.

Los comentarios realizados en la página web y app de AEM Daily News pueden publicarse simultáneamente en las principales redes sociales dentro de la aspiración a ampliar la conversación a otros espacios.

Los mensajes escritos en mayúsculas, publicitarios o sobre cuestiones no relacionadas con el tema del artículo serán rechazados.

AEM Daily News se reserva el derecho de eliminar los comentarios que considere inadecuados y de expulsar a aquellas personas que incumplan estas normas.

Hazte socio de la AEM

Regístrate como socio y pasa a formar parte de la red de profesionales de Mantenimiento más importante de España.

Más información

Formación AEM

Consulta nuestra agenda de eventos y encuentra la formación que buscas en el área del mantenimiento.

Ver oferta formativa

Síguenos en las redes

No te pierdas ningún evento

Suscríbete a nuestro newsletter para recibir en tu correo o en nuestra app Android / iOS toda la información sobre formación, jornadas, webinars, etc.

Suscríbete al newsletter

Patrocinadores

Conviértete en patrocinador de la AEM

Infórmate de los beneficios y ventajas de asociarse a la AEM. Contacta con nosotros.

El sitio web utiliza cookies propias y de terceros con fines analíticos y técnicos para mejorar la experiencia de navegación. Puede aceptarlas todas o cambiar las preferencias de sus cookies en el botón de Configuración. Mas información en Política de cookies.